Team All Traffic Solutions

Fairfax County Transportation and Mobility Hackathon

Our History

- All Traffic Solutions is a provider of Cloud Connected IOT traffic devices.
- We provide product and services for
 - Variable Messaging
 - Traffic Calming
 - Virtual Traffic Studies
 - Counting and classifying of live traffic

What led us to this Idea

- For years we have been collecting traffic data (not used in hackathon)
- We are always looking for ways to leverage this data to make roads safer and more convenient.
- Open data allowed us to correlate traffic events with many nontraffic related events

Uber 1M riders/day

Rush hour ideas

- Educational Campaigns
- Road Side messages
- Roving Enforcement

The Goal Became Clear

- How do I get to work without dying
- We attempted to devise a way to determine the safest way to work

Self Imposed Limits

- Intersection based traffic incidents
- Limited ourselves to 20 intersections as a sample set
- Disregarded the many other interesting avenues of discovery were present in the data

Our Approach

- Using Smarter Roads Data
 - Using Lat/Long of intersections created an overlay with a polygon around each intersection
 - Determined volume of cars in each intersection by an intercept polygon and the ADT of road vector
 - Ran an analysis to determine crashes that occurred in each polygon
- With this data set we were able to determine and rank the intersections based on the crashes per x/cars

Birth of the skull index

Rank Cı	rash per volume	Skull Index	
1	0.467801927	9.372911608	
2	0.435042689	8.579073231	
3	0.678408153	6.871903985	
4	0.50352163	6.792126221	
5	0.471296246	6.540291628	
6	0.384845455	4.999410949	
7	0.420041217	4.922292881	400, 400, 400, 400, 400, 400, 400, 400,
8	0.306867923	3.363591509	
9	0.259837783	2.796169775	int int int
10	0.2463834	2.567957655	
11	0.080478299	2.501000063	
12	0.10798932	2.186407137	ini ini
13	0.100042668	2.026658653	Jat Jat
14	0.285387	1.340037939	
15	0.134351419	0.736907783	940
16	0.22995784	0.00326452	

What did we do

- We created an automated and parametrized process to objectively rank and classify all the intersections in Virginia for safety.
- In the process we were able to create an key bound link between crash data and road data.

So ... What now?

- Now that we have the a join of intersection properties and crash data;
 - We look for identifying properties of risk environments.
 - We can prioritize where to apply resources
 - We can deploy live feedback devices to mitigate risk when it is need
- These insights could lead to
 - How they differ from non-risk intersections of similar layout
 - IFTTT notification to cars via DSRC, traditional messaging, or other
 - Improved guidelines for creating lower risk intersections
 - Time and condition responsive, predictive heat maps

Data Sources Used

- Smarter Roads Crash Data
- Smarter Roads Traffic Volume Data
- VA Roads shape file, csv for Intersections and visualization
- Mike on Traffic Blog
- North Carolina DOT Resource
- https://connect.ncdot.gov/resources/safety/Documents/TEAAS/Chapter%2008%20AADT.pdf

Team

- Brendan Freehart
- Chris Black
- Briton Westerhaus
- Michael Boyle
- Andy Souders
- Kent Fullerton
- Presentation on line at http://hackathon.alltrafficsolutions.com/

